
Netherlands TNO Physics and Electronics
organization for Laboratory
applied scientific
research P.O. Box 96864

2509 JG The Hague
Oude Waalsdorperweg 63

TNO-report The Hague, The Netherlands

Fax +31 70 328 09 61
Phone +31 70 326 42 21

T!C FiLE COPY title
report no. copy no.

FEL-90-B131 Garbled Text String Recognition with

a Spatio-temporal Pattern Recognition
Neural Network

Nothing from this issue may be reproduced
and/or published by print, photoprint,

rmicrofilm or any other means without
previous written consent from TNO. author:
Submitting the report for Inspection to
parties directly interested is prmitted. P. P. Meiler

CIn case this report was drafted under

(instruction, the rights and obligations

of contracting parties are subject to either
the 'Standard Conditions for Research
Instructions given to TNO' or the relevant

agreement concluded between the contracting DI
parties on account of the research object
involved.

~TNO E 3P 14~9

classification

title : Unclassified

abstract : Unclassified

report : Unclassified

appendix A : Unclassified

no. of copies : 46

no. of pages : 67 incl. titlepage and appendix,
excl. distr. list and RDP)

appendices : 1

date " June 1990

All information which is classified according to

Dutch regulations shall be treated by the recipient

in the same way as classified information of

corresponding value in his own country. No part of

this information will be disclosed to any party.

DISTIBUrION'ATME A

Approved for public reioaSc;
Distributii-n Un'9092d 90g 09 ,,13 222

I'NC ',eo':

Page

report no. FEL-90-B131

title Garbled text string recognition with a spatio-temporal pattern recognition

Neural Network

author P.P. Meiler

institute TNO Physics and Electronics Laboratory

date June 1990

no. in pow '90 708

ABSTRACT (UNCLASSIFIED)

The purpose of this project is to show that neural networks can be used to recognize garbled

words and'or parts of sentences in a real-world application. TNO-FEL has studied and built an

application that recognizes the names of ships. These names may be garbled by transmission or

typing errors, and synonyms or corruptions may be used. The SPR network emphasizes the

character-sequence relationships within words. SPR is proof against missing, extra or

interchanged (pairs of) characters. A learning strategy was developed and implemented. Several

measurements were performed. . .. ,. ,

- - ,4~

/A

Page
2

rapport no. FEL-90-B131

titel Verminkle tekst string herkenning met een spatlo-temporeel patroon

herkennings Neuraal Netwerk

auteur P.P. Meiler

instituut Fysisch en Elektronisch Laboratorium TNO

datum Juni 1990
no. in iwp '90 708

SAMENVATTING (ONGERUBRICEERD)

Het doel van dit project is om aan te tonen dat neurale netwerken gebruikt kunnen worden om, in

een real-world toepassing. verminkte woorden enlot delen van zinnen te herkennen. Er is een
applicatie bestudeerd en gebouwd die in staat is de namen van schepen te herkennen. Deze
namen kunnen verminkt ziln door transmissie- ervot typetouten. Ook kan een synoniem gebruikt
zijn i.p.v. de off icieIe naam. Het SPR netwerk Iegt de nadwuk op de karakter-volgorde relaties in
een woord. SPR is bestand tegen weggevallen, extra tussengevoegdfe en verwisseiale karakters.
Er is een Ieerstrategie ontwikkeld en geimplementeerd. De performance van het netwerk is d.m.v.

een aantal metingen geeivalueerd.

Page

3

ABSTRACT 1

SAMENVATTING 2

CONTENTS 3

INDEX

LIST OF FIGURES

1 INTRODUCTION 10

1.1 Recognizing the names of ships 10

1.2 Recognizing the names of cities 11

13 A solution 11

1.4 Outline of the rest of this report 12

2 NEURAL NETWORK TECHNOLOGY 13

2.1 A single layer neural network 13

2.2 A multi layer neural network 14

2.3 Properties of a processing element 17

2.4 Learning a neural network 20

2.5 Application areas 21

2.6 Advantages of neural networks 22

2.7 Disadvantages of neural networks 23

2.8 Creating a neural network 24

2.9 Implementation of a neural network 24

3 SPR NETWORK 26
3.1 The architecture of the SPR network 26

3.2 Narm-e tacognition with a SPR neural network 34

3.3 Refinements and extensions 34

3.4 An extra Tsi input 35

3.5 N ... ,iz... of 'thc ,thv,.,,, :'y,, 35
3.6 Remembering the maximum PE output value 36

Page
4

3.7 Implementation as a software simulation 38

3.8 Implementation on a parallel processing system 40

4 WEIGHT VECTORS 41

4.1 Off-line calculation 41

4.2 The learning rule 41

5 RESULTS 44

5.1 Random character distortion 45

5.2 Random character interchange 46

6 CONCLUSIONS 48

7 REFERENCES 49

8 LITERATURE 50

APPENDIX A: VISUALIZATION OF EVENTS IN A SPR NEURAL NETWORK

TNO ' ,,

Page

5

INDEX

A priori knowledge 34
Accu racy

22
Activation function

17, 12,22, C
Activat;on history

42
Al technology 11

Algorithm
23

Allocation of layers 43

ANZA PLUS 24,39

Application areas
21, 22

Architecture
13, 26

ART algorithm
42

ASCII code 34

Associative memory 21

Attack function
29

Backpropagation
15

Behaviour
13, 20, 23

Bio-chips
25

Biological nervous system
13

Classification
14

Classifier
21

Comparator
31

Computational temperature
39

Connection pattern
13

Connectivity
31

Constant input
18

Content addressable memory
14

Continuous learning
23

Creating a neural network
24

Data representation
34

Decision region
18, 19

Delta ,u'
14

Dot product 34

Dynamics of a PE
15

TNO ,epoo

Page
6

Environment 23, 24

Error sources 11

Expert system 11,48

Fault tolerance 22

Feature 14

Graczful dcgradation 22

Hardware simulation 25

Hebbian learning 14

Hidden layer 15

Holograms 25

Hopfield network 14

Hyperplane 18

Implementation of a neural network 24

Information overflow 42

Input layer 34

Input space 18

Interchanged vectors 35

Interconnection bottle-neck 40

Internal representation 20

Knowledge 17

Layer 14, 26

Learning a neural network 20

Learning data set 21, 23

Learning phase 14, 15, 18, 21, 22,23

Learning rule 14, 15, 17, 20, 21,24, 41

Length of a name 35

Linear separability 18

Logic Programming 11

Long term memory 17

Massively paralle! systems 13, 22

Match Threshold 31

Match value 26

Matched filter 26

Maximum Processing Element 37

Measurement 44

Names of cities 11

Page
7

Names o1 ships

10Network parameters 3 4

Neural Network Technology 11

Neural networks 1

Neuron 0, 13

Normalization 3

Number of Multiplications 45

Numerical calculation

Off-line calculation 21

Optical Character Recognition 1141

Optical system 2 5

Optimum parameter set 39

Output layer
15Output PE 36

Paradigm 36
Paradigm13, 23, 48

Parallel Processing 10, 11,21,25,40

Pattern 1 3
PE 13
Pe 13, 17,23,26
Pertorrrance

22, 23, 38, 39, 42, 44, 45
Pilot project

Post processor 10

Pre processor 41

34Processing equation
13,14,26,41

Random character distortion
Random character interchange 46

Range
18Scalability 40

Sensitivity of a PE

Sequence
30
11

Short term memory
17

Simulated annealing
38Software simulation

Special purpose VLSI system
25

Speed
25, 39, 40

SPR program
38

Supervised learning
15, 21,41

Page
8

Test and development environment 38

Text string 34

Text string recognition 10

Threshold function 29
Time sequence relationships 26

TNO-FEL 10

Transputer 40

Unsupervised learning 21

Vector 34

Visualization 12

Von Neumann computer 13

Wafer scale technology 22

Weight 13, 17

Weight vector 41

Weighted sum 17

I NO " :o'

Page
9

LIST OF FIGURES

Figure 1 Conceivable neural network architectures 16
Figure 2 Schematic diagram of a processing element 17
Figure 3 A line is a hyperplane in two dimensions 19
Figure 4 Decision regions in multi layer networks 20
Figure 5 SPR network architecture 27
Figure 6 SPR processing equations 28
Figure 7 PE reaction to input 28
Figure 8 SPR matching

31
Figure 9 Nearest matched filter bank 32
Figure 10 An extra TSI input 35
Figure 11 Adding an output OPE 36
Figure 12 Effect of the MPE 37
Figure 13 Adding a Maximum-PE (MPE) 38
Figure 14 Parallel implementation of SPR network 40
Figure 15 Allocation of layers in a SPR network 43
Figure 16 Random character distortion 46
Figure 17 Random character interchange 47

Page
10

INTRODUCTION

The Physics and Electronics Laboratory TNO (TNO-FEL) focuses primarily on observation,

communication, information processing and operational research To support the fast data

processing usually required in sensory systems research, one of the research topics in Division 2

(System Development and Information Technology) comprises Parallel Processing. The major

application areas covered by the Parallel Processing Group are:

Radar data processing

Real-time comput';r generated imagery (CGI-systems)

3-D image analysis processing and visualization (voxel processing)

Using neural :tetworks in -vision systems, multi sensor integration and other kinds of

data-processing

Within the field of Parailel Processing, neural networks are becoming more and more popular.

Because TNC is an Organization for Applied Scientific Research, our goal is not only to gather

theoretical knowledge about neural network technology, but also to gain experience with the

application of this knowledge. Recognizing text strings with a neural network was selected as a

pilot protect to gain some of that practical experience. Tris report presents the results of that

project Another pilot project is radar pulse classification with a BSB network [Wezenbeek 1990].

A text string recognition system can be very useful. Two examples of the usefulness of an

automatic text string recognition system will be given.

1.1 Recognizing the names of ships

Consider a single channel radio broadcast net. A number of units exchange messages using this

net The messages may be sent using a code (e.g. ASCII). Each unit receives all messages that

are sent by any of the other L '_. A unit could be a ship in a group of navy ships

A message is recognized using the information in the header of the message. The header

contains, among other data, the name of the addressee. This name (which is a text string) can

then be used to recognize the message.

Page

An automatic name recogiition system which is capable lo perform this task must be able to deal

with different kinds of errors. A list of possible error sources:

Spelling errors

Typing errors

- Transmission errors.

1.2 Recognizing the names of cities

With Optical Character Recognition (OCR) technology it is possible to read the dcstination

address (e g. the name of a city) of a letter. This process is not perfect. Characters may be

misinterpreted (e.g. a '0' may be read as an '0' or vice-versa), or they may be totally unreadable

(because of ink spots etc.). The ;ender of the letter may also make a spelling error.

Each country has a fixed set of cities. An automatic name recognition system finds the name of

the city that matches best with the address on the letter, even f there are missing characters, etc.

1.3 A solution

Building an 0 utomatic name recognition system using conventional programming languages Is

very difficult. Al technology (e.g, Expert systems or Logic Programming) is more suitable. TNO-

FEL is currently investigating the feasibility of such a system.

Due to its characteristics the problem was also chosen to be soved using "Neural Network

Technology", as Dart of , research on parallel processing at TNO-FEL.

The name recognition problem was chosen because it is a real world problem that is large encugh

to have practical relevance and small enough to be manageable. The research was limited to the

recognition of names (text strings). Operational requirements and constraints have not been taken

into account.

The "Neural Network Technology" solution was implemented as a Spatio-temporal Pattern

Recognition (SPR) neural network because the SPR concept fits very well with the fact that words

consist of sequences of characters.

Page
12

1 .4 Outline of the rest of this report

The next section, "NEURAL NETWORK TECHNOLOGY", presents an elementary introduction to

the theory and practice of neural network technology. The section "SPR NETWORK" will discuss

the architecture and implementation of the SPR network, while the section "WEIGHT VECTORS"

explains the learning rule that is used to train the SPR network (i.e. to set the weight vectors). The

section "RESULTS" presents and explains the results of two measurements that were performed

with the SPR network. The conclusions are given in the section "CONCLUSIONS". The literature

that is referenced in this report is listed in the section "REFERENCES". Other relevant literature is

listed in the section "LITERATURE". An Index and a List of Figures are provided at the start of this

report A visualization of the time varying activation levels of the PE's of the network is presented

in appendix A

TNO o'o

Page
13

2 NEURAL NETWORK TECHNOLOGY

Neural networks are massively parallel information processing systems. The structure and

behaviour of a neural network is in some respects similar to a biological nervous system. A neural

network consists of many, yet very simple, processing elements. A processing element will be

referred to as PE. According to the biological model a PE can be compared with a neuron. The

PE's of a neural network are, often very densely, connected to each other. A weight is associated

with each connection between two PE's to determine its strength. Different neural network

architectures may use different connection patterns or topologies (figure 1).

Instead of executing a program sequentially, as in classical von Neumann computers, all PE's of a

neural network are active in parallel to explore many competing hypotheses at the same time.

There is no central supervising unit in a neural network. Each PE processes its input data

according to a predefined processing equation, independently o! the other PE's. In fact, a neural

network does not execute a program at all. The behaviour of a neural network is not programmed,

it is learned using examples. For more information see [Grossberg 1988], [Lippmann 1987] and

[McClelland & Rumelhart 1986].

A neural network is characterized by its paradigm. A neural network paradigm consists of the

description of the following items:

Topology of the network

Processing equation describing the dynamics of a PE

Network activation procedure

Network learning procedure

Data representation

Different neural networks may function in a completely different way. The behaviour of two neural

network architectures will be described briefly in sections 2.1 and 2.2.

2.1 A single layer neural network

A neural network can be used to match patterns. A pattern may be an image, a fourier transform

of a sonar signal, a radar echo, etc. The network can find the best matching pattern of a set of

known patterns when presented with a pattern that it has never been presented with before (i.e.

the input pattern). If the input pattern is a distorted version of one of the known patterns, the

Page
14

network is able to recall the original pattern with which it corresponds. This type of neural network

is known as a content addressable memory or Hopfield network, [Hopfield 1982].

The knowledge about the set of known patterns is represented in the network by the values of the

weights of the connections between the PE's. The knowledge about each single pattern is

distributed over all PE's in the network. The set of known patterns is learned by the network in a

separate learning session.

Because all PE's in the network are fully connected to each other (figure la) there is no layered

structure in the network, so the network is called a single layer network. A pattern is described

using a fixed number of features. A feature may be a binary or an analog value. If a pattern is

described using N features, the network contains N PE's. Each PE has one external input to read

the value of the feature of the input pattern that corresponds with that particular PE. Each PE has

N-1 internal inputs (ore for each of the other PE's of the network) that are used read the outputs

of these other PE's. All PE's execute the same simple processing equation. This equation is

discussed in more detail in section 2.3 "Properties of a processing element". A Hopfield network

with N PE's can contain 0.15 N known patterns without becoming unstable.

The network is operated as follows: first the input pattern is presented to the external inputs of the

PE's of the network. Subsequently each PE calculates a new output value in parallel with the

other PE's. Each PE may calculate its new output value asynchronously with respect to the other

PE's. The calculation of a new output value uses the input values from the other PE's multiplied

with the values of the corresponding weights and the value of a feature of the original unknown

input pattern, also multiplied by a weight factor. The output values of the PE's keep changing, the

weights remain fixed. After a number of iterations the network will have converged to a stable

state. The outputs of the PE's then represent the best matching output pattern.

The weights are set (learned) in a separate learning phase. In this learning phase the set of

patterns that must be stored in the network is repeatedly presented to the network, and the

weights are adapted according to a learning rule (such as Hebbian learning or the delta rule). The

learning phase will be discussed in more detail in section 2.4: "Leaming a neural network".

2.2 A mufti layer neural network

A neural network can be used to classify patterns. The network may for instance classify input

patterns as belonging to class A or class B. The network consists of three layers: an input layer, a

Page
15

hidden layer and an output layer (figure 1b). The network discussed here contains one hidden

layer, more complicated networks may contain more hidden layers. It is a so called feed forward

network. The PE's within a single layer are not connected to each other. The output of each PE of

a layer is connected to an input of each PE of the next higher layer.

The input layer contains one PE for each feature that characterizes a pattern. The PE's in the

input layer don't transform the input feature values. They just distribute the input feature values to

the PE's of the first hidden layer.

A hidden layer is characterized by the fact that the PE's of a hidden layer are only connected to

other PE's of the network and not to extemal inputs or outputs. The number of PE's in a hidden

layer and the number of hidden layers is depends on the complexity of the classification problem.

The PE's in the hidden layer(s) and in the output layer implement the same processing equation.

In the output layer there is one PE for each class. See section 2.3 for more information about the

dynamics of a PE. A network consisting of 50 PE's (34 PE's in the input layer, 14 PE's in the

hidden layer and 2 PE's in the output layer) is already capable of simple SONAR signal

classification [Gorman & Sejnowski 1988].

The network is operated as follows: a new input pattern is presented to the input layer. The

feature values are distributed to and processed by the PE's of the hidden layer and finally

distributed to and processed by the PE's of the output layer. The PE of the output layer with the

highest output value represents the class to which the input pattern belongs.

The weights are set in a separate learning phase. In this phase examples of input patterns are

presented to the PE's of the input layer while the class to which the input pattern belongs is

indicated to the PE's of the output layer. This is called supervised learning. The weights can be

set using a learning rule like Backpropagation, see [McClelland & Rumelhart 1986, pp. 318-364].

TNO eport

Page
OUT 1a: FULLY INTERCONNECTED 16

ONE LAYER NETWORK

N
0 OUTPUT LAYER

0\
HIDDEN LAYER

INPUT LAYER

IN

Ib: 3-LAYER NETWORK

NETWORK 3

A / ;OUT

NETWORK 1NETWORK 2
1c:SEVERAL NETWORKS

CONNECTED TOGETHER

IN 1 IN 2

Figure 1 Conceivable neural network architectures

TNO reDOi

Page
17

2.3 Properties uo a processing element

A typical PE has many inputs (from other PE's or from the outside world) and a single output.
There is a weight Wi associated with the input from PEi to PEj. PEj computes its output Ei as a

simple (non-linear) function of the weighted sum of its N inputs (figure 2). Function Af(x) is also

called the activation function of the PE.

N
Ei = Af(I Qj.Wij) (i)ji

1
Af (x) (2)I+ e-x

Q1

Q2 Wil Af (l

WiN NON LINEAR
GN ACTIVATION FUNCTION

Figure 2 Schematic diagram of a processing element

A typical hardware implementation of a PE is non-linear, analog, has a low resolution and may be

slow compared to digital integrated circuits. The state of the outputs of the PE's is regarded as the

short term memory of the neural network. The short term memory changes very rapidly as the

network iterates to a stable state.

The knowledge of a neural network is contained in the values of the weights of the PE's of the

neural network. The state of the weights of the PE's is regarded as the long term memory of the

neural network. The long term memory is adapted slowly using a learning rule. A positive

Page
18

weight factor represents a positive or excitatory input. A negative weight factor represents a

negative or inhibitory input. A zero weight factor is the same as "no connection".

A PE with N inputs divides its N-dimensional input space into two regions separated by an

N-dimensional hyperplane that is realized by the activation function Af of that PE. The output of

the PE is active (high) in one of the regions and passive (low) in the other region. That is why

such a region is called a decision region. For N=2 this is graphically shown in figures 3 and 4.

A single PE can successfully classify two classes that are linearly separable (figure 3). The output

value OUT of a PE is the result of the activation function A(x). This means that the range of OUT

is limited to 0 < OUT < 1. The PE is said to be passive (e.g. selecting class A) if OUT < 0.5 and

active (e.g. selecting class B) if OUT > 0.5. The output of the PE is on the boundary of the

decision regions A and B if OUT = 0.5. Now Af(x) = 0.5 if x = 0. In the case of this simple

2-input PE the value of x is defined by equation (3).

Y = Q, .W- + Q2.W- + 0 (3)

Here 0 is a constant input to the PE. Input 0 can be considered as a weight value W3 connected

to the constant value 1 (0 = W3 .1 = W3). This means that the value of 0 can also be set in the

learning phase. Now x = 0 if equation (3) equals zero. We can rewrite this as equation (4) to

obtain the description of a line:

W-, 1

Q - - . (4)
WI W1

The output OUT of the PE will be active on one side of the line and passive on the other side. The

position and orientation of the line in the 2-dimensional plane can be chosen arbitrary by choosing

appropriate values for W 1 , W2 and 0. This line represents the hyperplane that separates the input

into classes A and B in the simple 2-dimensional case. It can be seen that the X-or problem can't

be solved using a single layer (= single PE) neural network because this problem is not linearly

separable (figure 4).

TNO report

Page
19

B
Q2 B B OUT = 112

4"-'B QI -w Q2 -W16

Wi W

Q2 2

Figure 3 A line is a hyperplane in two dimensions

In the following discussion about the number of layers that is necessary to implement decision

regions the input layer is not regarded as a processing layer. The two decision regions formed by

a single neuron are both unbounded. A combination of N+1 hyperplanes can select a bounded

decision region in an N-dimensional input space. This can be implemented by a network with a

single hidden layer of N+1 PE's and an output layer consisting of a single PE that combines the

hyperplanes formed by the hidden layer into one bounded region. Such a two layer network can

also solve the X-or problem.

The use of more than N+1 hyperplanes for one decision region allows for a more flexible shape of

that region. It is also possible to use a single PE in the definition of more than one decision

region. In fact, this is what actually occurs in a real neural network.

Suppose that classes A and B are distributed over several separate regions. Each region is

represented by a two layer network. We can then combine these regions by a PE of the layer on

the next higher level. Such a three layer network can implement decision regions of unlimited

complexity.

Page
20

TYPES OF EXCLUSIVE OR CLASSES WITH MOST GENERAL
STRUCTURE DECISION REGIONS PROBLEM MESHED REGIONS REGION SHAPES1

SINGLE LAYER
HALF PLANE

BOUNDED 0BYB
HYPERPLANE

BYB

TWO -LAYER

CONVEX
OPEN
OR _

CLOSEDREGIONS Q V

THREE-LAYER
ARBITRARY
Comptexify
Limited By

Numer of Neurons j

Figure 4 Decision regions in multi layer networks

2,4 Learning a neural network

The behaviour of a neural network is learned, it is not programmed. Learning means setting the

weights of the PE's of the neural network in such a way that the neural network performs the

desired function. The values of the weights can be calculated off-line (possibly on a separate

computer system) or can be learned by the network itself using example patterns and a learning

rule. The learning rule ensures that the neural network generates an internal representation of a

solution to the problem to be solved.

INO

Page
21

A number of learning rules that are currently known and used:

Hebb Rule [Hebb 1949], [Rochester, Holland, Haibt & Duda 1956] and [McClelland &

Rumelhart 1986, pp. 35-76]

Widrow-Hoff or Delta rule [McClelland & Rumelhart 1986, pp. 35-76]

Generalized Delta Rule or Back Propagation [McClelland & Rumelhart 1986, pp. 318-

362]

Adaptive Resonance Theory [Grossberg 1980]

Kohonen learning [Kohonen 1984]

With supervised learning, the neural network is presented with a series of inputs, while the

corresponding desired outputs are presented at the teaching inputs. Supervised learning is used

for associative memories or classifiers.

With unsupervised learning, the neural network is presented with a series of inputs only. There

is no external "teaching input". Unsupervised learning is used to train nets to quantify vectors or to

form clusters.

The learning data set (also called training data set) that is used to train a network is very

important. All information that is necessary to solve a problem must be contained in the training

set. l1 the set is presented to the network too often in the learning phase, the network may

become 'overtrained' and lose its ability to generalize.

2.5 Application areas

Neural networks are especially useful in recognition and classification problems. These problems

require fast evaluation of many hypotheses. Neural networks are capable of evaluating many

hypotheses in parallel. These are just the problems that have not yet been solved satisfactorily

using conventional computers but that can be solved readily using biological systems (like e.g.

human beings). Neural networks are not very good at precise numerical calculations. A neural

network would not be used to calculate the price of a car.

T ",N 0 c

Page
22

A short list of application areas:

Scaling, translation and rotation invariant pattern recognition

Production line control

Inverse kinematics

Optimization problems

Distributed associative memory

Multi sensor integration

Hand written character recognition

Radar pulse classification

Text string recognition

2.6 Advantages of neural networks

The advantages of using neural networks extend beyond the promise of the huge computational

power provided by massive parallelism.

Neural networks provide a large degree of fault tolerance. Because a network consists of many

PE's and even more connections and because the knowledge of the network may be distributed

over all these PE's and connections, the failure of a few PE's or connections will generally not

degrade the performance significantly. This is called graceful degradation. PE's that are already

faulty before the learning phase begins are even less a problem: their outputs will just be ignored

by the rest of the neural network.

The performance of a neural network is relatively independent of the accuracy of the PE's. The

dynamic output range and internal calculations of a PE may be implemented using simple 8-bit

arithmetic or crude analog circuits. The non-linear activation functions of the PE's of the network

don't have to be exactly the same. The PE's of a neural network may be activated asynchronously

with respect to each other. These facts allow the use of optical systems to implement massively

parallel, robust and cheap neural networks. It is very difficult to harness the immense potentials of

optical systems to implement conventional von-Neumann computers. The same facts allow the

use of wafer scale technology for neural network implementation. Such a systern will still work,

regardless of the flaws that will probable be present on the wafer. The defective PE's will just be

ignored.

Page
23

Some neural networks have the ability to continue learning while performing their normal task.

This is important because in many classification and recognition problems the environment of the

network changes dynamically (while the network is in operation).

It is not always possible, or it can at least sometimes be very difficult and time-consuming, to

create and verify an algorithm for a conventional von-Neumann computer for certain applications.

Because a neural network is not programmed, this problem does not occur when using neural

networks. In the learning phase the neural network builds an internal representation of the

characteristics of its task. The learning data set must represent the environment in which the

network will operate after the learning phase. Gathering this learning data set (together with

choosing a neural network paradigm) is the task that replaces the classical algorithm design

process.

2.7 Disadvantages of neural networks

The behaviour of a neural network is learned by presenting it with a number of examples. This

behaviour is stored in the weights of the network using a learning process. If the learning data set

is not carefully chosen then the required behaviour may not be learned.

It is sometimes necessary to find out why a system has produced a certain decision. The process

leading to a decision produced by a program on a von-Neumann computer can always be traced,

although this is sometimes not easy. The behaviour and knowledge of a neural network is stored

in its weights. The PE's of a network may be updated in parallel and asynchronously. This means

that it is often impossible to find out why a neural network reacts as it does. Each piecp of

knowledge of the network is distributed over all weights of the network. Although the neural

network may perform one or more clearly defined functions, it may be impossible to locate a

certain PE or weight in the network that performs a certain function. Neural networks can be used

to scve problems for which it is very difficult or impossible to write an algorithm. It must not be

expected that we can take a neural network, solve the problem and then use the informaticn in

the network to see how it solved the problem.

A neural network may not always provide the completely correct answer to a problem, although it

will never generate a "divide by zero error" or something like that. Because the precise internal

behaviour of a neural network is generally not known, it is also impossible to prove

(mathematically or using software verification techniques) that a neural network system always

produces a correct answer. Instead the performance of a neural network must be assessed

Page
24

using statistical techniques. This may result in statements like "the network correctly classifies

96% of the patterns belonging to class A".

A neural network is not suited to perform precise numerical calculations. Most neural networks

are not perfect. The decisions produced by a neural network may be near optimum instead of

perfect. There is always a chance that a result prod. ed by a neural network is wrong. This

chance is dependent upon the kind "-f network, the number of PE's in the network, the set of

examples, the learning rule, etc.

A neural network may not always detect the !oyic that is intrinsic in a problem. It may be possible

to learn a network that 0+1=1, 1+1=2. 2+1=3, etc, but the network may still not be able to

calculate 2+2=0 '. neural network is noit intelligent.

28 Creating a neurai network

Instead of creating a pogram, a neural network engineer mist accomolish the following steps to

create a neural network:

Define an appropriate neural network architecture

Define a proper mapping from the environment to the inputs of the network

Define a proper mapping from the outputs of the network to the environment

Define the network parameters

Choose the learning rule

- Gather a representative learning data set

2 9 Implementation of a neural network

Neural networks can - implemented in a number of ways. A short list of the possible

implementations:

Software simulation on an ordinary von-Neumann computer (ranging from a PC to a

supe rcomputer).

Software simulation on an adapted von-Neumann type computer (e.g with separate

memory banks for fast parallel vector access, internal pipelines, special hardware, micro

code optimized for neural network simulation) such as SAIC's Delta floating point

processor and HNC's ANZA PLUS processor.

Page
25

Softwaie simulation on existing parallel pocessing systems such as the NCUBE, the
Connection Machine, transputer farms, etc.

Hardware simulation using special purpose VLSI systems, such as Syntonic's Dendros

chip-set or the neural bit slire from Micro Devices.

Optical implementations using holograms. Current research investigates the use of

alterable volume holograms to store the connection weights.

Implementation using blo-chips. Biochips may be slower than current VLSI, but many

rmore PE's could be implemented, resulting in a speed improvement of te sybfem. Bio-

chips may contain more faulty devices on a chip than current VLSI technology, but, as

explained before, this does not have to be a problem for neural networks

Page
26

3 SPR NETWORK

This section first discusses the architecture of the SPR network. After that it is explained how this

architecture is used to solve the name recognition problem. Some refinements and extensions to

the SPR network concerning this particular application are discussed next. The implementation of

the SPR network as a software simulation and on a parallel processing system is the last item of

this section.

3 1 The architecture of the SPR network

A Spatio-temporal Pattern Recognition neural network is designed to recognize time sequence

relationships in a series of input vectors Q (a vector Q consists of a number of analog or binary

elements) The SPR neural network architecture is shown in figure 5. The SPR network is able to

calculate a matching score between a series of input vectors and a number of series of vectors

that are stored in the network. The network can be thought of as a bank of matched filters (each

layer of the network represents one matched filter), where each filter is tuned to a specific series

of input vectors.

The network consists of a number of layers. Each layer can recognize one series of input vectors.

A layer contains a number of Processing Elements (PE's). A PE can calculate a match value

between an input vector Q and a weight vector W stored in the PE. A PE has one input and one

weight factor for each element of an input vector. The processing equations of a PE are given

below. A graphical representation is shown in figure 6.

Page
27

"WINNER TAKES ALL"
COMPARATOR

~CLASS M

A B C

Y SPR LAYERS

G2 CLASS 2

L (P CLASS I

M-DIMENSIONIAL

OUTPUT VECTOR

NOR1,1ALIZ ING

INPUT LAYER

N-DI-MENSICNAL

SERIES INPUT VECTOR

Figure 5 SPR network architecture

TNO report

Page
28

b

X [d - - --g - -(. - , , - - .., X n e w

Xold

W

Q1 C2 e 6 ,

Figure 6 SPR processing equations

I(t)= combination of Q and Ts,

/\

I

a.Av C

Figure 7 PE reaction to input

TNO report

Page
29

SPR Variables:

Xnew = New output of PE (at time t+1)

Xold = Previous output of PE (at time t)

Tsi = Time sequence input (output from previous PE, at time t)
Q = Normalized input vector

W = Normalized weight vector

SPR Parameters:

Av = Attack value Av > 1

Tv = Threshold vaiue 0 < Tv < 1

a = Decay constant 0 < a < 1

b = Time sequence gain 0 < b < 1

c = Input gain 0 < c < 1

SPR processing equations:

Xnew =Xo d + Af(-a.Xold + b.Tsi + c.Tf(Q.W)) (5)

Av.x IF x > 0
Af(x) = (6)

x IF x < 0

x IF x > Tv
Tf(x) (7)

0 IF x < Tv

Note that there is only one input from another PE (The Tsi input), and that that other PE is the
previous PE in the same layer. Because of this the number of connections between PE's is O(N),

where N = number of PE's.

If a PE is being activated by a constant input value I, which is a combination of Tsi and Q.W, it will

reach its maximum output value with a time constant Tup (equation 8). When I - 0 the output will

return to 0 with a time constant Tdown (equation 9). If Av > 1 then Tup < Tdown. This important

task is performed by the attack function Af (see figure 7 and equation 6). The threshold

function Tf (equation 7) keeps the PE from reacting if the match between Q and W is too small.

TNO report

Page
30

Tup = 1 (8)
a. Av

Tdown =(9)

a

The input vectors are supplied to the SPR network one after another. Each input vector is

presented to all PE's of all layers of the network at the same time. The value of the feed-forward

connections between PE's in a certain layer indicates the match at that time between the series of

input vectors that can be recognized by that layer, and the series of input vectors that is actually

being offered to the network.

The important thing in the scheme described above is that the sensitivity of a PE to an input

vector is controlled by the feed-forward output of the previous PE in the same layer.

As an example (figure 8) suppose that a layer is set to recognize a series of vectors (A, B, C), and

that this series is supplied sequentially to the network at times T=1, T=2 and T=3. At T=1 PE A

matches input vector A and is activated. At T=2 PE B matches input vector B and is activated.

The output of PE B at T=2 is larger than the output of PE A at T=1, because it is activated by the

input vector as well as the Tsi input from PE A. For the same reason, the output of PE C is even

larger at T=3. So the outputs of the PE's in a layer keep getting larger as long as the input vectors

keep matching. If there is a temporary mismatch between the series of input vectors and the PE's

in a layer, e.g. if one of the input vectors is missing, this effect will persist, although the output

value of the last PE of the layer will be less than if there would have been a perfect match. Note

that the output value of a PE slowly decreases when its input is zero (look at PE A at T=1, T=2,

T=3).

TNO ,epot

Page
31

I
T=1 A

T=2 BA B

T=3 CA B

Figure 8 SPR matching

The output of the last PE of a layer is used as the Match Value (MV) between that layer and the

input to the network. A comparator is used to choose the best-matching layer, or to provide a
.no match" signal if all outputs of the layers stay below a pre-defined Match Threshold (MThrh)

value.

The SPR processing equations resemble the nearest matched filter bank equations of [Hecht-

Nielsen 1987] (figure 9). There are two important differences between these two neural network

architectures with regard to the connectivity:

The SPR network uses a fixed number (1 or 2) of feed-forward connections per PE. This

fact reduces the number of connections from O(N 2) for the matched filter bank to O(N)

for SPR. There are no connections between PE's in different layers. This fact is very

important if the network is to be implemented using parallel processing hardware.

The SPR network doesn't use the concept of a system activity threshold variable r.

F occurs in the processing equations of each PE. r is defined as a function of the

outputs of all PE's. This means that after each iteration r must be recalculated

(requiring the availability of the output values of all PE's) and sent back to all PE's.

TNO repor

Page
32

"
Xl 1 , - X r x2 2 2° XN M

O.i 02 Q,

Figure 9 Nearest matched filter bank

Nearest matched filter bank variables:

Xi(t+1) = New output of PE

Xi(t) = Previous output of PE 0 < Xi(t) < 1

lil(t) = Time sequence activation

4Wi = Time sequence weight vector 0 < Wii <1, Wii =

li2(t) = Input vector activation

Q(t) = Input vector Q= 1

. = Pattern sample weight vector Z-1 = 1

f(t) = System activity threshold F(t) z 0

S(t) = System power level

TNO report

Page
33

Nearest matched filter bank parameters:

a = Decay constant a > 0

b = Overall PE inpu! b > 0

c - Attack constant 0 < c <

(X = ct-P controller parameter a > 1

P = a-P3 controller parameter > 1

T = Power level target

m = Number of PE's m < n.N

n = Number of sample points per pattern

N = No. of stored spatio-temporal patterns

Nearest matched filter bank processing equations:

Xi(t+l) Xi(t) + A(-a.Xi(t) + b(Ii(t)l+Ii 2 (t)-r(t) +) (10)

I(tl wijxj(t) = Wi.X(t) (11)

n
12

1 (t) I Zij.Qj(t) = Zi.Q(t) (12)
j=l

r(t+1) = F(t) + a. (S(t) T) + S' (t) (13)

m
S(t) = - Xi (t) (14)

i=1

u IF u > 0
(U)+ = (15)

0 IF u < 0

u IF u > 0
A(u)+ = (16)

c.u IF u < 0

"NO repor

Page
34

3.2 Name recognition with a SPR neural network

A text string is considered as a sequence of characters. Each character of a text string is

represented by one vector. A string consisting of N characters is represented by a series of N

vectors. SPR considers a string as a time sequence because the vectors are supplied to the

network one after another in the order in which they appear in the text (from left to right).

Each PE contains a weight vector W that represents the character(s) that is/are to be recognized

by that PE. If a PE is used to recognize only one character, its weight vector is identical to the

vector representation of that character.

A pre processor fetches each message and supplies the words of that message to the network

one by one.

Data representation is an important subject in neural network theory. SPR networks need

normalized input and weight vectors. This is necessary because the match between the input

vector Q and the weight vector W is calculated using the dot product (equation 17).

X.Y = IXI.IY .cos(O) (17)

This match must correspond with the value of cos(O), so LXI and Y1X must be 1, i.e. X and Y must

be normalized.

The characters can be represented by an 8-bit vector (e.g. using the 8-bit ASCII code). This

vector is normalized by a normalizing input layer and then supplied to the network.

3.3 Refinements and extensions

The bare-bones SPR network architecture as discussed above is suitable for the name

recognition problem, but not Ideal. Some refinements and extensions can be made to the

network to let it perform even better. The idea is to put as much a priori knowledge about the

name recognition problem into the architecture of the network as possible.

INO ,epoil

Page
35

3.4 An extra Tsi input

To make the network less sensitive to a pair of interchanged vectors in a series of input vectors,

an extra Tsi input is added to each PE (figure 10). Suppose a layer contains P PE's. Then PE[Nj

has a Tsi 1 from PE[N-1] and a Tsi2 from PE[N-2]. The PE activation function now looks like:

Xnew = Xold + Af(-a.Xold + bl.Tsi I + b2 .Tsi 2 + c.Tf(Q.W)) (18)

Suppose that a layer is set to recognize the name 'ABCDEF', and that the input name is

'ACBDEF'. PE D will be activated by an input 'C' (via Tsi 1 , as usual) as well as by an input 'B' (via

Tsi2). This way, the order of the two inputs 'B' and 'C' is less important for the activation of PE D.

STRENGTH - 1 -4
STRENGTH = 0 5

Figure 10 An extra TSI input

3.5 Normalization of the match value of a layer

In a standard SPR network each layer has the same amount of PE's. In this application, the

names to be recognized may have different lengths. If a layer has P PE's and the name to be

recognized by the layer is C characters long, than the weights of the first (P-C) PE's in the layer

are set to zero.

Suppose we have two layers, one to recognize a name of length 3 (called L3) and one to

recognize a name of length 6 (called L6). In the case of a perfect input for L3 as well as L6 the

match value (MV) of L6 will be larger than the MV of L3, because the outputs of the PE's in L6

have had more network iterations (6 instead of 3) to grow. So there is a difference in MV,

although the inputs are both perfect.

TNO report

Page
36

This problem is solved by normalizing the MV's of all layers. The maximum MV for a layer of

length N, called MMVn, is known (it can be calculated off-line or we can just input a perfectly

matching string into the network and read the value of PE N after N iterations). An extra Output

PE (OPE) is added to each layer (figure 11). The OPE multiplies the output of the last PE in a

layer of length N with a factor 1/MMVn. This way, the output of the OPE is always 1 for a perfect

input, Independent of the length of the name.

max. output of PE 'E' = MMV5

OPE' Output = Input x 1/MMV5

OPE

Figure 11 Adding an output OPE

36 Remembering the maximum PE output value

Until now it was assumed that the output value of the last PE in a layer gives the best indication

for the match between the input name and the name stored in that layer. If one fixed PE must be

chosen, out of all available PE's in a layer, to indicate the match, the last PE is indeed the best

choice. However, this strategy is not perfect. A better strategy is discussed below (figure 12).

Suppose a layer L is set to recognize the series S='HARLINGEN'. The #' character is used to

indicate a character that does not match with any PE in any layer. There are two inputs:

A='HARLI####' and B='#####NGEN'. Input A should match better than input B because A has

5 characters in common with S and B has only 4 characters in common with S. With the network

as described until now, this will not happen. If we look at the output of the last PE of L, B will

score better than A.

Suppose A is presented to the network. The first 5 PE's of the layer will show an increasing output

value, because the first 5 characters of A match with S. The last 4 PE's will show a decreasing

TNO 'epor

Page
37

output value, because the last 4 characters of A don't match with S. Let FOA be the Final Output

reached (i.e. that of PE 9). Let MOA be the Maximum Output value reached (i.e. that of PE 5).

Then FOA < MOA. In figure 12 FOA = 1.0 and MOA - 2.3.

The following will happen when B is presented to the network: The outputs of the first 5 PE's of

the layer will stay zero because the first 5 characters of B don't match with S. The last 4 PE's will

show an increasing output value, because the last 4 characters of B match wit S. Let FOB be the

Final Output reached (i.e. that of PE 9). In this case, MOB = FOB. In figure 12 FOB = MOB = 1.9.

The result is that FOB > FOA (although FOB < MOA), indicating B as matching better than A. To

handle this problem correctly, a Maximum Processing Element (MPE) is added to each layer. The

MPE is connected to the outputs of all PE's in that layer and retains the maximum output that

ever occurred in that layer (figure 13). The output of the MPE is then used instead of the output of

the last PE of the layer (figure 12). Using the MPE, the problem is solved because now

MOA > MOB and input A wins.

23

Consecutive PE- 1.0 1

Output values

__ I _p I I I I1

2 23 2 1

Consecutive11

MI I I - I I I I I I

Name to beHA L N EH RL G NNmIobeH A R LIN G E N H A R L I N G E N

recognized

Input name H A R L I # # # # # # # # # N G E N

Figure 12 Effect of the MPE

1 NO 'epO'1

Page
33

MPE Remembers highest input value OUT

MPE OPE

A B C D E

Figure 13 Adding a Maximum-PE (MPE)

37 Implementation as a software simulation

A program called 'SPR' has been written. The program simulates a SPR network used to

recognize names as described in this report, including the refinements and extensions discussed

above. The program is coded in Turbo Pascal 5.0 and runs on a PC AT or compatible, optionally

using a 80287 coprocessor. The program consists of 4000 lines of source code.

The SPR program provides an Interactive SPR network test and development environment. It is

possible to run the network, chanc., ""a parameters, run the network again, store the results,

recall, learn, and store the weight vectors, etc. The program can generate a complete overview of

what happens inside a network while it is running, numerically as well as graphically.

Each application of an SPR network requires its own optimum set of network parameters (Av, Tv,

a, bl, b2, c). It is a known problem that an optimum set for these kind of networks is not easi:y

found. The SPR program offers the possibility to adapt the SPR parameters to try to reach ar.

optimum set. This is done using a technique called simulated annealing [Aarts & Korst 1987].

Suppose we do a total of N parameter updates, with N - 0(103). For each update, one of the

6 parameters of the parameter set is chosen randomly (so each parameter is updated N/6 times

on the average). This parameter is updated by adding a signed random number R to It. The

performance of the network is assessed (using a random character distortion measurement as

Pag2

39

discussed in the chapter 'Resufts'. If the performance of the network is better with the updated
parameter than it was before, the value of the updated parameter will be accepted as the new
parameter value with a chance P (with P somewhera ii the order of 90%). Because P < 100% a
parameter value may be accepted with a chance (100 - P)% even if it makes the performance
worse. This is to make it possible tC escape out of local minima. The absolute value of R

decreases gradually during the series of parameter adaptations. This is equivalent to lowering the
'computational temperature' of the random update process.

The above strategy assumes that a single Darameter set (Av, Tv, a, bl, b2, c) is used for all
layers in the network. Anoiner approach would be to tune the parameter set (Avk, Tvk, ak, blk,
b2k, ck) for each layer K independently. This strategy would allow each layer K to recognize its
input maximally. However, an optimum recognition for a single layer of a single name that allows
as much distortior, as possible, is to just always recognize the input as correct, because each
conceivable input can always be formed by applying a number of distortions to the original name.
The parameter set for each layer depends on the names that must be recognized by that layer
and by the names that must be recognized by the other layers of the network. So it is not possible

to set the parameter set for one layer independently of the other layers. This does not mean that
the parameter set should be the same for each layer. It might be possible to devise a paran.,.ter
setting algorithm that produces an optimum non identical parameter set for each layer of the
network. However, this subject h:as not been investigated further.

vhen simulating a network of 11 names, each consisting of 12 characters, the program can
process two names per second. This number can be increased by removing the book-keeping
tasks that are necessary to loo,, at what happens 'inside the network". This was not done,
because that is just what the simulator is used for. Assembly routines could be used at critical
points.

The speed of a neural network can be defined as the number of connections between PE's that
can be processed in one second. A good way to increase the performance (speed) of the
program is to interface it to the ANZA Plus neural network simulator (from HNC incorpor '9d),
which can process 0(106) network connections per second, as opp,.ied to 0(104) conneci .ns

per second using an IBM AT. A still better way is of course to really implement the network on a

parallel processing system, as discussed below.

I NO

Page
40

3.8 Implementation on a parallel processing system

A SPR network is very well suitable for implementation on a parallel processing system. Because

there is no inter-layer communication, each processor of the system can implement one or more

layers of the SPR network without any communication between the processors. A parallel

implementation of the SPR network does not suffer from the Interconnection bottle-neck,

because the number of connections in the network is of O(N) and not of O(N2), where N is the

number of PE's. This means that the SPR architecture is scalable. The speed of the system

increases linearly with the number of processors in the system. We are thinking of implementing

an SPR network using tranSputers [INMOS 1988] (figure 14).

bC

PROCESSOR2

PROCESSOR N

Figure 14 Parallel implementation of SPR network

Page
41

4 WEIGHT VECTORS

Once the architecture of the network and the processing equations of the PE's have been
determined, the weights must be set. The weights must be set according to the purpose of the
network. Sometimes the weights can be calculated off-line. Most neural network architectures are

related with some kind of learning rule. This learning rule is used to set the weights in one or more

learning sessions. Learning can be done supervised or unsupervised. The weights for the name

recognition SPR network can be calculated off-line or they can be set using supervised learning.

4.1 Off-line calculation

Off-line calculation of the weights is very simple: the weight vector of a PE is assumed to be the

same as the vector representation of tme character that must be recognized by that PE.

Suppose that the name 'ALKMAAR' is the N-th name that must be recognized by the network.

The weights of the PE's of the N-th layer are set to recognize this name. Suppose that each layer

contains P PE's. The name 'ALKMAAR' has 7 characters, so the weights of the last 7 PE's of
layer N must be set. The weights of PE's [N,] to [N,P-71 are set to zero. The weights of
PE [N, P-6] are set to the vector representation of 'A', those of PE[N, P-5] to 'L, etc. The weights

of PE [NP] are set to 'R'.

4.2 The learning rule

A supervised learning rule is used. The supervision consist of the fact that only those words of a

message that represent names of ships are selected and used to train the network.

The !earning rule assumes a network of M layers. Initially it is assumed that the number of names

to be recognized is R, where R < M. The learning rule allocates one layer for each name to be
recognized. When a name with a specific error is encountered often, an extra layer may be

allocated for that name. This layer will then be set to match that name while it contains the error.
When this happens there will be L layers (L > 2) that refer to the same name. The outputs of

these L layers must then be merged together by a post processor, so that the correct name will

be indicated when one of these L layers wins the competition. This information must be provided

by the learning supervisor.

NfO report

Page
42

When there are more names to be recognized by the network than there are layers available (i.e.

when R > M), the M names that occur most frequently will be stored. This procedure is discussed

in more detail below (figure 15).

If MV > MThrh (MV = match value, MThrh = match threshold), it is assumed that the input name is

similar (but not necessarily identical) to the name represented by the winning layer in the network,

and the weights W of that layer are adapted according to the vectors Q of the input name. For

each character vector W of the winning layer this adaptation consists of adding a fraction f of the

input vector.Q to W and normalizing the result (equation 19).

Wnew = I(Wold + fQ) I (19)

If the input name is identical to the name to be recognized by the winning layer, effectively no

adaptation will be performed (because for each character of the input name Qi = Wi).

If MV - MThrh, it is assumed that the input name is not yet stored, and a new layer is allocated to

refer to this name.

If a new layer must be allocated, but all layers of the network are already in use, the layer that

least frequently won the competition in the past is cleared and used for the new name. This

means that the activation history of each layer must be kept track off. The layer with the lowest

activation history is cleared.

This strategy prevents the network from the "Information overflow" problem, a problem that

occurs e.g. in a Hopfield network when one tries to store more than about 0.15 N (N = the number

of PE's) classes in the network. The performance of a Hopfield network will degrade rapidly if this

occurs. The SPR learning strategy resembles Grossberg's ART algorithm [Grossberg 1980] in this

respect.

TNO report

Page
43

LEARNING
MAX

i. Comparator

IUpdate _l

Threshold /Add!

r 1Update

L

LN+
7

Ad

Figue 1 Alocaton f lyer in SP newor

TNO reporP

Page

44

5 RESULTS

The results of two measurements of the performance of the SPR network are discussed below.

The test network is set to recognize 11 names. A name can consist of up to 12 characters.

The network parameters are set to the following values:

Av =Attack value = 1.3

Tv = Threshold value = 0.5

a = Decay constant = 0.8

b1 = Tsi 1 = 0.4

b2 = Tsi 2 = 0.3

c = Input gain = 1.0

The names used to test the network with are:

ALKMAAR

DELFZYL

DORDRECHT

HARLINGEN

MAASSLUIS

SCHEVENINGEN

SCHIEDAM

URK

VLAARDINGEN

WILLEMSTAD

ZIERIKZEE

The score of each of the 21 measurement points of a graph is calculated by distorting and

processing each of the 11 names 5 times. A total of 21 x 11 x 5 - 1155 runs of the network must

be performed for a single graph.

One run of the network consists of processing one name. Processing one name means

processing each of its L characters one at a time. Each character is processed by all PE's of the

network. Processing a character means calculating the dot product of two vectors of N elements,

i.e. performing N multiplications. If the network can recognize M names, the number of PE's NPE

TNO report

Page
45

in the network is NPE M x L. The Number of Multiplications NM needed to process one name is

then:

NM = L x NPE x N = L x M x L x N = L 2 x M x N (20)

With L=12, M=11 and N=8 (ASCII code), NM=12,672. The Total Number of
Multiplications TNM for one graph is then: TNM = 1155 x NM . 14,636,160.

Two different types of distortions were used, resulting in two different measurements, both of

which are discussed below.

5.1 Random character distortion

The first measurement uses a random character distortion of some of the characters of the input
names. Each of the characters of each input name has a chance P (in %) to be distorted. The
distortion consists of choosing a random character instead of the original character. P varies from
0% to 100% in increments of 5%. The score for a percentage P is the percentage of the 55
names that is recognized correcty.

Examples:

'ABCDEFGHIJ' & P = 20% -> 'ABRDEFGAIJ'

'ABCDEFGHIJ' & P = 50% -> 'AXJDPFGAIM'

The test shows that the network still recognizes 95% of the names when 30% of the characters of

an input name is distorted. The performance decreases gradually when P increases (figure 16).

TNO report

Page
46

score
100 0 0

80

60-

40-

20,

0
10 20 30 40 50 60 70 80 90 100

character distortion chance (in %)

Figure 16 Random character distortion

5.2 Random character interchange

The second measurement uses a character interchange of some of the character pairs of the

input names. The string 'ABCD' consists of 3 character pairs: 'AB', 'BC' and 'CD'. Each of the

character pairs of each input name has a chance P (in %) to be distorted. The distortion consists

of Interchanging the two characters of a character pair. P varies from 0% to 100% in increments

of 5%.

Examples:

'ABCDEFGHIJK' & P - 20% -> 'ACBDEFGIHJK'

'ABCDEFGHIJK' & P - 30% -> 'BACEDFGHJIK'

If the score is calculated as above, i.e. as the percentage of the 55 names that is recognized

correctly, the score is always greater than 98%, even with 100% of the character pairs

interchanged. This is partly because the network is indeed very insensitive to character pair

TNO report

Page
47

interchange and partly because the test network can choose only from 11 names (the chance of
choosing the wrong name will increase i there are more names to choose from).

The random character interchange measurement requires a more discriminating method to
calculate the score. Let AVB = Activation Value of the Best matching layer and AVS = Activation
Value of the Second best matching layer. The score for one input name is calculated as the
relative difference between the activation values of the best matching layer and the second best

matching layer (equation 21).

AVB-AVS
score = (21)

AVB

The resulting score of a measurement consisting of processing the 55 names with a character
pair interchange chance P is the mean value of the scores for each of the 55 names (figure 17).

The test shows that the network discriminates quite well between the best and second best
matching layers (the score stays between 0.65 and 0.45) and decreases gradually when P

increases.

score

1.0

0.8

0.6

0.4

0.2

0
10 20 30 40 50 60 70 80 90 100

character interchange chance (in %)

Figure 17 Random character interchange

iTNO report

Page
48

6 CONCLUSIONS

- The SPR network works well. It recognizes names when one or more of the characters

are erroneous, missing, interchanged, or when extra characters are added.

The use of a SPR network for name recognition gives good results while the paradigm

itself is simple. "Information overflow" can not occur in the learning phase. If the

capacity of the network is too small, only the most frequently used names are learned.

A working implementation of the SPR network for the name recognition problem has

been realized. The program runs on an IBM PC or compatible.

Because the SPR architecture is inherently parallel the SPR network is suitable for

implementation on a parallel processing system. Because there is no inter processor

communication while processing the layers of the network, the speed of the system

increases linearly with the number of processors, i.e. the SPR architecture is linearly

scalable.

Comparable results can be obtained using expert systems. Expert systems require the

existence of a rule base, which must be created by the designers of the system.

Creating a rule base can be very difficult. All possible situations must be analyzed. A

neural network generates its own internal representation of the characteristics of its

input. This approach only works if the learning data set is a close approximation of the

real world environment, in which the network is supposed to function.

P.L.J. van Lieshout P.P. Meiler

(Groupleader) (Author)

TNO report!

Page

49

7 REFERENCES

Aarts E.H.L. & Korst J.H.M., Combinatorial Optimization on a Boltzmann Machine, Philips

Research Laboratories, Eindhoven, The Netherlands. Submitted to Journal of Parallel

and Distributed Computing, 1987.
Duda W.L., Haibt L.H., Holland J.H., Rochester N., Tests on a cell assembly theory of the action

of the brain, using a large digital computer, IRE Transactions on Information Theory IT-

2, pp. 80-93, 1956

Gorman R.P., Sejnowski T.J., Analysis of Hidden Units in a Layered Network Trained to Classify

Sonar targets, Neural Networks, Volume 1, Number 1, Pergamon Press, pp. 75-89,

1988

Grossberg S., How does a brain build a cognitive code?, Psychological Review 87, pp. 1-51, 1980

Grossberg S., Nonlinear Neural Networks: Principles, Mechanisms, and Architectures, Neural

Networks, Volume 1, Number 1, Pergamon Press, pp. 17-61, 1988

Hebb D.O., The organization of behaviour, Wiley, New York, Introduction and Chapter 4, The first

stage of perception: growth of the assembly, pp. xi-xix, 60-78, 1949

Hecht-Nielsen R., Nearest matched filler classification of spatiotemporal patterns, Applied Optics,

Vol. 26, No 10, pp. 1892-1899, May 15, 1987

Hopfield J.J., Neural networks and physical systems with emergent collective computational

abilities, Proceedings of the National Academy of Sciences 79, pp. 2554-2558, 1982

INMOS, The transputer family, INMOS limited, Bristol, UK, 1988

Kohonen T., Self-organization and Associative memory, Springer-Verlag, Berlin, 1984

Lippmann R.P., An Introduction to Computing with Neural Nets, IEEE ASSP Magazine, pp. 4-22,

April 1987

McClelland J.L. & Rumelhart D.E., Parallel distributed processing, Vol. I, II and III,

Cambridge MA., MIT press, 1986

Wezenbeek van A., BSB radar pulse classification, report number FEL-90-B023, TNO-FEL, 1990.

TNO report

Page
50

8 LITERATURE

Bakkers A.P., Neural controllers and transputers, Control laboratory, Electrical engineering

department, University of Twenthe, The Netherlands. Presented at the BIRA seminar,

Antwerp, Belgium, October 1988.

Bengio Y., Cardin R., Mori de R. & Merlo E., Programmable execution of multi layered networks

for automatic speech recognition, Communications of the ACM, Vol. 32, Number 2,
pp. 195-199, February 1989.

Berkel van B. & Smedt de K., Triphone analysis: a combined method for the correction of

orthographical and typographical errors, Institute for Applied Computer Science, TNO-

ITI, Delft, The Netherlands, 1987.

Bharath R., Information Theory, Byte, pp. 291-298, December 1987

Chalmers E.G. & Paddon D.J., A system configuration for very large database problerrs,

Department of Computer Science, University of Bristol, Bristol BS8 1TR, England.

Published in the proceedings of the 1 1th Occam User Group technical meeting,

Edinburgh, Scotland, September 1989

Coolen A. & Kuijk F.W., A learning mechanism for invariant pattern recognition in neural networks,

Dept. of Medical and Physiological Physics, University of Utrecht, The Netherlands.

Presented at the Neural Networks Workshop, Utrecht, The Netherlands, February 1989.

Grossberg S., Adaptive pattern classification and universal recoding: I. Parallel development and

coding of neural feature detectors, Biological Cybernetics 23, pp. 121-134, 1976

Hanazawa T., Hinton G., Lang K., Shikano K. & Waibel A., Phoneme recognition using time-delay

neural networks, IEEE transactions on Acoustics, Speech and Signal Processing,

Vol. 37, No. 3, pp. 328-339, March 1989.

HNC incorporated, ANZA Plus User's Guide and Neurosoftware documents, Release 2.1, San

Diego, California, 1988

Houtekamer G.E. & Reijns G.L., Computer Performance, (L96), Computer Architecture

Laboratory, Faculty of Electrical Engineering, Delft University of Technology, 1986

Howard R.E., Jackel L.D. & Graf H.P., Electronic neural networks, AT&T Technical Journal,

Volume 67, Issue 1, January / February 1988

Gao 0. & Liu Z., Spatio-temporal associative memory and a high-order correlation neural

network, Institute of Biophysics, Academia Sinica, Beijing, Peoples Republic of China.

Published in INNS, "Abstracts of the first annual INNS meeting, Boston, 1988", Neural

Networks, Volume 1, Supp!ement 1, pp. 176, Pergamon Press, 1988

TNO report

Page

51

INNS, Abstracts of the first annual INNS meeting, Boston, 1988, Neural Networks, Volume 1,

Supplement 1, Pergamon Press, 1988
Kaski K. & Vanhala J., Simulating neural networks in a distributed environment, Tampere

University of technology, Microelectronics laboratory, P.O. Box 527, SF-33101
Tampere, Finland. Published in the proceedings of the 11 th Occam User Group

technical meeting, Edinburgh, Scotland, September 1989
Rosenberg C.R. & Sejnowski T., NETtalk: A Parallel Network That Learns to Read Aloud, John

Hopkins Univ., Technical Report JHU/EECS-86/01, 1986
Soucek B. & Soucek M., Neural and Massively Parallel Computers, John Wiley & Sons, Inc, 1988

1 NO repor

Appendix A Pac,
A1

VISUALIZATION OF EVENTS IN A SPR NEURAL NETWORK

The SPR neural network for garbled text st,;;.- ecognition has been implemented as a software

simulation program called SPR. The SPR program offers the possibility to visualize the time

varying activation levels of the PE's in the network while an input name is being processed. There

are two different visualization methods: the Cathode Ray Tube (CRT) display method and the

filed display method. Both methods will be explained.

A.1 Description of the architecture of the SPR network

To interpret the visualization it is n(cessary to understand the SPR neural network architecture. A

short explanation of the SPR architecture is given in this appendix. A detailed description can be

found in the report (chapter 3).

The input to the network is divided into time slices. During each time slice, one character of the

input word is processed by the network. The input name 'URK' would be divided into three time

slices: Slice 1 = 'U'

Slice 2 ='R'

Slice 3 = 'K'

First all PE's of the network will process input character'U' corresponding time slice 1. Next all

PE's will process input character R' corresponding to time slice 2. Finally all PE's will process

input character 'K' corresponding to time slice 3.

Each PE represents one character. The PE's of the network are arranged as a matrix. Each row

represents one input name. Each column represents one time slice. The first column represents

time slice 1, the second column represents time slice 2, etc. The names are right aligned, i.e. if a

name contains N (N<C) characters and there are C columns in the matrix, then the leftmost

(C-N) PE's are not used. There are feed forward (left to right) connections between PE's

belonging to the same row

A.2 Representation of the activation level of a PE

Each PE is represented by a solid horizontal bar. 1 he length of the bar represents the activation

level of the PE (a longer bar means a higher activation level). The activation levels are scaled.

TNO .

Appendix A Page
A.2

The highest PE activation luvel that ever occurs while processing an input name is used as a

reference a,'ivation level of 100%. This 100% activation level is assigned to the maximum bar

length. When, in a certain time slice, a PE has an activation level of 40% of the maximum

activation level, the length of the bar representing that PE wil be set to 40% of the maximum bar

length.

The activation level of a PE can optionally be disp;ayed numerically (as a floating point number)

instead of graphically (as a bar). The a~vantage of the numerical display mode is that the PE

activation levels are known precisely. There is only a limited choice of bar lengths to choose from

in the graphical display mode, so activation levels that differ only slightly may be visualized as

having the same bar length and thus having the same activation level. The n'imerical display

mode will remove this uncertainty. The disadvantage of the numerical display mode is that it is

more difficult to see at once what happens in the network.

A.3 CRT display method

The CRT display method shows the most significant subset of the events in the network as a

plot on the CRT. The advantage of this method is that the reaction of the network to an input

name can be seen at once in a single picture. The disadvantage is that only a subset of the

events is shown. In almost all cases this display method is sufficient to analyse the reaction of the

network.

Suppose an input name contains M characters and the SPR network consists of a matrix of

M columns and L rows (i.e. there are L names known to the network). These M characters are

processed by the network in M time slices. The CRT display method displays a matrix of

M columns and L rows. The leftmost column (column 1) shows the activation levels of the PE's in

the leftmost column of the SPR network matrix at tiniqe slice 1 (when the first character is

processed). The next column (column 2) shows the activation levels of the PE's in the second

column of the SPR network matrix at time slice 2 (when the second character is processed), etc.

The rightmost column (column M) shows the activation levels of the PE's in the last column of the

SPR network matrix at time slice M (when the last character is processed).

Suppose that the SPR network consists of C columns and L rows where C>M. Due to the limited

space available on a single screen, the CRT display method only shows M (M-8) of the C time

slices (columns), i.e. slices C-M+1 to C. This means that when a name containing N1 (NI >M)

REPORT DOCUMENTATION PAGE (MOD-NL)

T NO repori

Appendix A Page
A.3

characters is processed, only the M time slices starting with slice (C-M+1) are shown. When a

name containing N2 (N2<M) characters is processed, the leftmost (M-N2) columns are blank.

Usually one PE in the last column has the highest activation value. The row to which this PE

belongs is the winning row (layer) of the network, So the winning name (i.e. the name that

corresponds to this row) is known. There are some exceptions to this rule. These exceptions are

explained in the report (sections 3.3 to 3.6).

A.4 The filed display method

The filed display method presents all events that occurred while an input name was processed.

For each time slice there is a plot of the activation levels of all PE's in the network. This allows a

comprehensive analysis of the reaction of the network to an input name. The data is stored as a

file. This file can be shown on a CRT or it can be printed on any printer that supports the IBM

extended character set. At the start of the file there is a list of the current parameter settings of the

network, the input name, the resulting output name, and the name templates. Following this

information there is one plot for each time slice.

A.5 Examples of the CRT display method

This series of four examples consists of copies of the result of the CRT display method. Each

copy shows the reaction of the network to a particular input name. The network consists of

12 columns (i.e. the maximum length of a name is 12 characters) and 11 rows (i.e. the network

can recognize 11 different names). The first input name 'ALKMAAR' (figure 1.a) perfectly matches

with the first row (layer) of the network, which represents the name 'ALKMAAR'. The result of this

perfect match is a maximum activation level of the last (rightmost) PE of the first row.

The next input names 'ARKMAAR', 'ARKMAAN' and 'RKMAAN' (figures l.b, 1.c and 1 .d) show

what happens when there is a decrearing match between the input name and the names known

to the network. The network still recognizes the input name correctly, but the difference between

the winning layer and the other layers in the network decreases.

TNO epor

Appendix A Page
A.4

A.6 Examples of the filed display method

Two examples of the filed display method are presented. The first example (figures 2.a to 2.i) is a

copy of the contents of the output file that is produced when the perfectly matching name

'ALKMAAR' is processed. The second example (figures 3.a to 3.h) is produced when the badly

garbled name 'RKMAAN' is processed.

i L

TNO repori

Appendix A Page
A.5

Interactive

Input: ALKMAAR

ALKMAAR
- -DELFZYL

-- DORDREChT
- HARLINGEN

-- MAASSLUIS

_ _ - -SCHEVENINGEN

- - SCHIEDAM
-- URK

-- L VLAARDINGEN
-- WILLEMSTAD

I_ _ _ ZIERIKZEE

Output: ALKMAAR 1.462

Figure l.a CRT display method, input name is 'ALKMAAR'

Interactive

Input: ARKMAAR

- * 3ALKMAAR
DELFZYL
DORDRECHT

HARLINGENiN MAASSLUIS

- - -SCHEVENINGEN

SCHIEDAM
- - URK

- -VLAARDINGEN

WILLEMSTAD
ZIERIKZEE

Output: ALKMAAR 1 393

Figure 1 .b CRT display method, input name is 'ARKMAAR'

T NO repor!

Appendix A Page
A.6

Interactive

Input: ARKMAAN

- m m m iALKMAAR
DELFZYL

HALINGENM W F r SSLUIS_ _SCHEVENING1EN-- -- SCHIEDAM

-- VLAAINGEN

-- WI-LLEMSTAD

16 -rm ZIERIKZEE

Output: ALKMAAR 1.160

Figure 1 .c CRT display method, input name is 'ARKMAAN'

InteracLive

Input: RKMAA-N

- - - - - m m m,
- - - _ - DELZYL

- - -- DORDRECHT
- --- HARLINGEN
.MAASSLUIS

SCHEVEN INGEN
SCHIEDAM

- URK
-- - - U VLAARDINGEN

- - ~ IWILLEMSTAD-- -- ZIERIXZEE

Output: ALKMAAR 1.094

Figure 1 .d CRT display method, input name is 'RKMAAN'

TNO report

Appendix A Page
A.7

...

I String Recognition with an SPR Neural Network I
...

Parameters:

0.800 Dc Decay Constant

0.400 TsgI first order Time Sequence Gain

0.300 Tsg2 Second order Time Sequence Gain

1.00C Ig Input Gain
0.500 Thr activation Threshold

1.30C Av Attack Value

Input : ALKAAR

Output: ALKfMAA

Figure 2.a Filed display method, input name is 'ALKMAAR', parameters

Name templates:

A L K M A A R

0 E L F Z Y L

D 0 R D R E C H T

H A R L I N G E N

M A A S S L U I S

S C H E V E N I N G E N

S C H I E D A M

U It K

V L A A R D I N G E N

W I L L E M S T A D

z 1 E R I K z E

Figure 2.b Filed display method, input name is 'ALKMAAR', name templates

TNO report

Appendix A Page
A.8

A
- M

Figure 2.c Filed display method, input name is'ALKMAAR', input character is A'

-~ ~ I S

Figure 2.d Filed display method, input name is 'ALKMAAR', input character Is V

TNC eO

Appendix A Page
A.9

Fiue2e Flddspa ehd nu nm sAKAKinu hrce sK

Fiur 2. Fie dipa mehd inu nam is 'AKAA' inu chrce

INO report

Appendix A Page

A. 10

IM
MA

Figure ~ ~ ~ 2. Fie ipa ehd nu aei'LMA' nu hrce s

Figure ~ ~ ~ 2. Fie dipa mehd inu naeI'LMA' nptcaatri'

TNO report

Appendix A Page
A1l

Fiur R. ie ipa ehd nu ae s'LMA' nu hrce s

TNO report

Appendix A Page
A.12

I String Recognition with an SPR Neural Network I

Parameters:

0.800 Dc Decay Constant
0.400 TsgI first order Time Sequence Gain
0.300 Ts92 second order Time Sequence Gain
1.000 Ig Input Gain
0.500 Thr activation Threshold
1.300 Av Attack Value

Input RJ04AAN

Output: ALKKAAR

Figure 3.a Filed display method, input name is 'RKMAAN', parameters

Name templates:

A L K M A A R

D E L F Z Y L

D 0 R D R E C H T

H A R L I N G E N

4 A A S S L U I S

S C H £ V E N I N G E N

S C H I E D A M

., U R

V L A A R D I N G E N

W I L L E M S T A D

Z I E A I K I E E

Figure 3.b Filed display method, Input name Is 'RKMAAN', name templates

TNQ repo't

Appendix A Page
A. 13

R

Figure 3.c Filed display method, input name is 'RKMAAN', input character is R

Fiue3d Flddslymehd nu aei'KAK' nu hrce sK

TNO report

Appendix A Page
A. 14

Fiue3e Fle ipa etoiptnmiRKANnptcacersV

Figure~ If Fie dipa mehd inu naei-RMA' nptcaatri A

L

- ---- ---- --- ---- ---

Appendix A Page

El A ~~A.15

Figure~ ~ ~ ~ 3. FieUipa ehd nu aei'KANiptcaatri A

- - - - U I I I

Figure 3.h Filed display method, input name is 'RKMAAN', input character is ''

UNCLASSIFIED

REPORT DOCUMENTATION PAGE (MOD-NL)
.....--

1. DEFENSE REPORT NUMBER (MOD-NL) 2. RECIPIENT'S ACCESSION NUMBER 3. PERFORMING ORGANIZATION REPORT

T090-1716 FEL-90-BI31

4. PROJECT/TASK/WORK UNIT NO 5. CONTRACT NUMBER 6. REPORT DATE

20477 JUNE 1990

7. NUMBER OF PAGES 8. NUMBER OF REFERENCES 9. TYPE OF REPORT AND DATES

67 (Incl. tlitlepage and appendix, 13 FINAL REPORT

excl. distr. list and RDP)

10. TITLE AND SUBTITLE

GARBLED TEXT STRING RECOGNITION WITH A SPATIO-TEMPORAL PATTERN RECOGNITION NEURAL NETWORK

11. AUTHOR(S)

P.P. MEILER

12. PERFORMING ORGANi??.TION NAME(S) AND ADDRESS(ES)

TNO PHYSICS AND ELECTRONICS LABORATORY

P.O. BOX 96864 2509 JG THE HAGUE THE NETHERLANDS

13. SPONSORING/MONITORING AGENCY NAME(S)

14. SUPPLEMENTARY NOTES

PAPER PRESENTED AT!

- NEURO-NIMES'89 INTERNATIONAL WORKSHOP, NIMES, FRANCE, NOVEMBER 13-16, 1989

- Al APPLICATIONS'89, SECOND DUTCH CONFERENCE, THE HAGUE, THE NETHERLANDS, NOVEMBER 28-29, 1989

15. ABSTRACT

THE PURPOSE OF THIS PROJECT IS TO SHOW THAT NEURAL NETWORKS CAN BE USED TO RECOGNIZE GARBLEr WORDS AND/OR PARTS OF

SENTENCES IN A REAL-WORLD APPLICATION. TNO-FEL HAS STUDIED AND BUILT AN APPLICATION THAT RECOGNIZES THE NAMES OF

SHIPS. THESE NAMES MAY BE GARBLED BY TRANSMISSION OR TYPING ERRORS, AND SYNONYMS OR CORRUPTIONS MAY BE USED. THE SPR

NETWORK EMPHASIZES THE CHARACTER-SEQUENCE RELATIONSHIPS WITHIN WORDS. SPR IS PROOF AGAINST MISSING, EXTRA OR
INTERCHANGED (PAIRS OF) CHARACTERS. A LEARNING STRATEGY WAS DEVELOPED AND IMPLEMENTED. SEVERAL MEASUREMENTS WERE

PERFORMED.

16. DESCRIPTORS IDENTIFIERS

NEURAL NETWORKS TEXT STRING RECOGNITION

PATTERN RECOGNITION SPATIO-TEMPORAL TECHNIQUES

CHARACTER KECOGNITION

PARALLEL PROCESSING

REAL TIME COMPUTATION

17a. SECURITY CLASSIFICATION 17b. SECURITY CLARSIFICATION 17C. SECURITY CLASSIFICATION

(OF REPORT) (OF PAGE) (OF ABSTRACT)

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

18. DISTRIBUTION/AVAILABILITY STATEMENT 17d. SECURITY CLASSIFICATION

(OF TITLCS)

UNLIMITED UNCLASSIFIED

UNCLASSIFIED

